229. Die Struktur der Hydrate von $\text{Co}_3[\text{Co}(\text{CN})_6]_2$ und $\text{Cd}_3[\text{Co}(\text{CN})_6]_2$ von A. Ludi und H. U. Güdel

Institut für anorganische, analytische und physikalische Chemie der Universität Bern, Freiestr. 3, CH-3000 Bern

(14. X. 68)

Summary. The crystal structures of $\text{Co}_3[\text{Co}(\text{CN})_6]_2$, 12 H_2O ($a = 10.210 \pm 0.005$ Å) and $\text{Cd}_3[\text{Co}(\text{CN})_6]_2$, 12 H_2O ($a = 10.590 \pm 0.005$ Å) have been determined by X-ray powder methods. According to the measured density the unit cell contains $1^1/_3$ formula units with 4 Co^{2+} (Cd^{2+}) in 4 a, $2^2/_3$ Co³⁺ in 4 b, 16 C and 16 N in 24 e, 8 H_2O_1 near 24 e (96 k) and 8 $\text{H}_2\text{O}_{\text{II}}$ near 8 c (192 l). Structure factor calculations based on the space group $\text{O}_h^5 - F m 3 m$ lead to the following final values of the reliability index R: 0.038 ($\text{Co}_3[\text{Co}(\text{CN})_6]_2$, 12 H_2O) and 0.037 ($\text{Cd}_3[\text{Co}(\text{CN})_6]_2$, 12 H_2O). The interatomic distances for the cobaltous compound (in parentheses for the cadmium compound) are: $\text{Co}^{3+}-\text{C}$: 1.88 Å (1.89); C-N: 1.15 Å (1.17); $\text{Co}^{2+}-\text{N}$: 2.08 Å (2.24); $\text{Co}^{2+}-\text{O}_1$: 2.10 Å (2.27); shortest O_1 -H- O_{II} -bonds: 2.89 Å (2.82). Co³⁺ is octahedrally coordinated by six carbon atoms, the divalent metal ion by four nitrogen atoms and two water molecules. The two different metal ions are connected by M²⁺-N-C-Co³⁺-bonds to a threedimensional network. The infrared and electronic spectra are shown to be in agreement with the results of the structure analyses of these compounds. The observed positions of the OH-stretching vibrations lead to a hydrogenbond-length of 2.8-2.95 Å.

1. Das Strukturmodell. – Sehr viele polynucleare Übergangsmetallcyanide kristallisieren kubisch mit einer flächenzentrierten Elementarzelle von 10–11 Å Kantenlänge [1]. Ausgehend von den Gitterkonstanten von Berlinerblau $KFe[Fe(CN)_6]$, bzw. Fe4[Fe(CN)6]3 stellten KEGGIN & MILES für diese Verbindung ein Strukturmodell auf, das sich vom ReO_a-Gitter herleitet [2]. Dieses Strukturmodell – im folgenden auch als «ursprüngliches Strukturmodell» bezeichnet – wurde später auf die ganze Gruppe der kubischen polynuclearen Übergangsmetallcyanide übertragen, speziell auch auf die hier diskutierten Hexacyanokobaltate(III) der Zusammensetzung M_a[Co(CN)₆]₂, x H₂O [3-6]. Die Stelle des zweiwertigen Kations M^{2+} wird dabei durch ein Ion der Übergangs- oder *B*-Metalle eingenommen. Nach dem ursprünglichen Strukturmodell befinden sich für diese Substanzen zwei Formeleinheiten in der Elementarzelle. Die zentralen Koordinationseinheiten sind durch $[MN_6]$ - und $[CoC_6]$ -Oktaeder dargestellt; M²+-N-C-Co³+-Brücken führen zu einer dreidimensionalen Gerüststruktur. Die kubische Elementarzelle kann auch als ein flächenzentrierter Würfel aufgefasst werden, der aus acht kleinen Würfeln – den Achtelswürfeln – durch Flächenberührung aufgebaut ist (vgl. Fig. 1). Die Ecken der Achtelswürfel sind abwechselnd von M^{2+} - und Co³⁺-Ionen besetzt. Zum Ladungsausgleich sind, da mit dieser Besetzung gleichviele M^{2+} -Kationen wie Co(CN)³⁻-Anionen vorhanden sind, zwei weitere M^{2+} -Ionen statistisch auf die acht Zentren der Achtelswürfel verteilt. Das Wasser wird in diesem Strukturmodell vernachlässigt. Es wird angenommen, dass entweder oberflächlich adsorbierte oder zeolithische Wassermolekeln vorliegen, denen aber keine definierten Gitterplätze zugeordnet werden [4] [5].

Bislang befassten sich die röntgenographischen Arbeiten vor allem mit der Bestimmung der Gitterkonstanten. Da die untersuchten Cyanide nur als extrem feinteilige Präparate anfielen, konnten keine genügend genauen Intensitätsmessungen durchgeführt werden, um Zuverlässigkeitsindices R zur Beurteilung der postulierten Struktur zu ermitteln. In einigen Fällen wurden rein qualitative Vergleiche zwischen beobachteten und berechneten Intensitäten angestellt [3–5]. Allerdings stammten die experimentellen Daten immer von wasserhaltigen Substanzen, der Auswertung diente jedoch das völlig wasserfreie Strukturmodell [5].

Während die Gitterkonstanten der polynuclearen Hexacyanokobaltate(III) experimentell gesichert sind, zeigt der Vergleich der von uns gemessenen Dichten mit den berechneten Werten, dass in der Elementarzelle weniger Formeleinheiten enthalten sind, als es das ursprüngliche Strukturmodell postuliert (vgl. Tabelle 1). Ferner weisen die Infrarotspektren darauf hin, dass in diesen Verbindungen neben zeolithischem auch koordinativ gebundenes Wasser vorliegt, so dass entsprechende Korrekturen am ursprünglichen Strukturmodell anzubringen sind.

Bei der Modifizierung des Strukturmodells sind wir davon ausgegangen, dass in erster Linie der Inhalt der Elementarzelle der gemessenen Dichte anzupassen ist. Die

Fig.1. Das Strukturmodell von $M_3[Co(CN)_6]_2$, x H_2O

(Gegenüber der Arbeit von FERRARI [5] ist der Ursprung um die halbe Würfeldiagonale verschoben; Bezeichnung der Positionen gemäss [7]; nur ein Teil der C, N, O_I gezeichnet)

	Position	ursprüngliches Strukturmodell	modifiziertes Strukturmodell
\bigcirc	4 <i>a</i> (0, 0, 0)	$4 M^{2+}$	4 M ²⁺
Ō	$4b(\frac{1}{2},\frac{1}{2},\frac{1}{2})$	4 Co ³⁺	$2^{2}/_{3}$ Co ³⁺
ĕ 1	Kanten der Achtelswürfel; 24 <i>e</i>	24 C	16 C
_ ● `	$(x, 0, 0; 0, x, 0; 0, 0, x; \overline{x}, 0, 0; 0, \overline{x}, 0; 0, 0, \overline{x})$	24 N	16 N, 8 H ₂ O ₁
(©) (im Achtelswürfel	$2 \mathbf{M}^{2+} (8 c)$	8 H ₂ O ₁₁
\sim	Koordinationseinheiten	$[CoC_6]$	$[CoC_{B}]$
		[MN ₆]	$[MN_4(H_2O)_2]$
			(mittlere
			Zusammensetzung

notwendige Verminderung des Zelleninhalts lässt sich am einfachsten dadurch erreichen, dass vorerst die nicht als Zentral-Ionen einer Koordinationseinheit vorliegenden Kationen M^{2_+} in den Achtelswürfeln weggelassen werden. Zur Aufrechterhaltung der Ladungsneutralität muss anschliessend eine äquivalente Anzahl Co(CN)⁶₆-Anionen

aus dem Gitter entfernt werden. Damit eröffnet sich zwangsläufig die Möglichkeit, die nicht mehr durch Cyanid-Stickstoffatome und M²⁺-Ionen beanspruchten Gitterplätze mit Wassermolekeln zu besetzen. Sowohl das ursprüngliche als auch das modifizierte Strukturmodell entsprechen der Raumgruppe $O_h^5 - Fm 3 m$.

In beiden Strukturmodellen sind bestimmte Positionen von weniger Metall-Ionen besetzt als es der kristallographischen Zähligkeit entspricht; im ursprünglichen Modell gilt dies für die Lage 8c, im modifizierten für 4b.

Mit dieser Besetzung der Elementarzelle nach unserem modifizierten Strukturmodell resultiert die Idealzusammensetzung $M_3[Co(CN)_6]_2$, 12 H_2O , wobei der Zelleninhalt 1¹/₃ Formeleinheiten beträgt. Die eine Hälfte der Wassermolekeln gehört zur Koordinationssphäre von M²⁺, die andere Hälfte befindet sich als zeolithisches Wasser in den Achtelswürfeln.

2. Experimentelle Bestätigung des modifizierten Strukturmodells. – 2.1. Die Gitterdaten. Die Indizierung der GUINIER-Aufnahmen, die durchwegs scharfe Linien aufweisen, bestätigt die von FERRARI [5] angegebenen Gitterkonstanten des kubisch-flächenzentrierten $M_3[Co(CN)_6]_2$, 12 H_2O ($M^{2+} = Mn^{2+}$, Fe^{2+} , Co^{2+} , Ni^{2+} , Zn^{2+} , Cd^{2+}). Unsere gemessenen Dichten d_4^{20} stimmen mit dem vom modifizierten Strukturmodell postulierten Zelleninhalt von $1^1/_3$ Formeleinheiten überein.

	Mn	\mathbf{Fe}	Co	Ni	Zn	Cd
a (Å)	10,43	10,31	10,210	10,145	10,26	10,590
	$\pm 0,01$	$\pm 0,01$	\pm 0,005	\pm 0,005	\pm 0,01	$\pm 0,005$
$d_{r\bar{o}} (g/cm^3)$	1,58	1,65	1,71	1,74	1,73	1,84
d_{20}^4 (g/cm ³)	1,66	1,67	1,74	1,71	1,75	1,89
$d_{r\ddot{o}}$ (g/cm ³) nach FERRARI [5]	2,38	2,47	2,58	2,68	2,60	2,78

Tabelle 1. Die Gitterdaten von $M_3[Co(CN)_6]_2$, 12 H_2O

2.2. Die Infrarotspektren. Infolge der alle Cyanid-Ionen erfassenden $M^{2+}-N-C-Co^{3+}$ -Brücken ist die im mononuclearen $Co(CN)_6^{3-}$ -Komplex bei 2129 cm⁻¹ auftretende Streckschwingung $\nu(CN)$ in den polynuclearen Cyaniden um rund 40 cm⁻¹ nach grösseren Wellenzahlen verschoben [8]. Im Bereich der OH-Streckschwingung $\nu(OH)$ er-

Fig. 2. Das Infrarotspektrum von Co₃[Co(CN)₆]₂, 12H₂O

scheinen neben einer scharfen Bande bei ca. 3650 cm⁻¹ zwischen 3200 und 3420 cm⁻¹ zwei breite, zum Teil nur als Schulter ausgebildete Absorptionsmaxima. Die scharfe Bande ist typisch für OH-Gruppen, die keine oder höchstens sehr schwache Wasserstoffbrücken ausbilden, während sich die breiten Banden empirisch [9] einer O–H–O-Brückenlänge von 2,8–2,95 Å zuordnen lassen. Weniger ausgeprägt treten die verschiedenartigen OH-Gruppen der Wassermolekeln auch in der Deformationsschwingung δ (HOH) bei 1610–1670 cm⁻¹ in Erscheinung. Die nur bei koordinierten Wassermolekeln vorkommende Rocking- und Wagging-Schwingung ϱ (H₂O) [10] wird als breite Bande bei rund 700 cm⁻¹ beobachtet.

Tabelle 2. Bandenlagen (cm⁻¹) der Infrarotspektren von $Co_3[Co(CN)_6]_2$, 12 H₂O und $Cd_3[Co(CN)_6]_2$, 12 H₂O (b = breite Bande, sh = Schulter)

M ²⁺	v (OH)	$\nu(CN)$	$\delta(\mathrm{HOH})$	$\varrho({ m H_2O})$	$ \frac{\nu(\text{CoC})}{\delta(\text{CoCN})} $
Со	3645 3420 b 3200 sh, b	2175	1670 sh 1612	720 b	460
Cd	3655 3400 b 3200 sh, b	2168	1660 sh 1610	700 b	450

2.3. Die Elektronenspektren. Im ultravioletten Bereich der Reflexionsspektren von $Co_3[Co(CN)_6]_2$, 12 H₂O und $Cd_3[Co(CN)_6]_2$, 12 H₂O liegen die für die Co(CN)₆-Gruppe charakteristischen Banden, die gegenüber dem mononuclearen Komplex etwas nach grösseren Wellenzahlen verschoben sind, bei:

	¹ T _{1g}	¹ T _{2g}
$Co_3[Co(CN)_6]_2, 12 H_2O$	32,6 kK	40,8 kK
$Cd_3[Co(CN)_6]_2, 12 H_2O$	32,6 kK	39,4 kK
$Co(CN)_{6}^{3-}$ [11]	32,4 kK	39 ,0 kK

Den für oktaedrisch koordinierte Co²⁺-Verbindungen typischen Verlauf zeigt das Reflexionsspektrum von Co₃[Co(CN)₆]₂, 12 H₂O im sichtbaren und nahen infraroten Gebiet, mit $v_1 = 8,8$ kK, $v_2 \sim 16$ kK (Schulter) und $v_3 = 19,2$; 20,2 kK. Die chromophore Gruppe ist nach dem modifizierten Strukturmodell durch die Koordinationseinheit der durchschnittlichen Zusammensetzung [CoN₄(H₂O)₂] definiert. Davon ausgehend berechnet sich nach der Regel der mittleren Umgebung [11] Dq(N), der Ligandenfeldparameter des Cyanid-Stickstoffes, zu rund 1 kK. Dieser Wert ist von der Grössenordnung der Ligandenfeldparameter anderer Co²⁺-Komplexe mit einzähnigen stickstoffkoordinierenden Liganden: 0,97 kK für Co(NCSe)⁴⁻₆ [12] und 1,01 kK für Co(NH₈)²⁺₆ [11].

2.4. Die röntgenographischen Strukturbestimmungen von $Co_3[Co(CN)_6]_2$, 12 H_2O und $Cd_3[Co(CN)_6]_2$, 12 H_2O . Der ersten, für $Co_3[Co(CN)_6]_2$, 12 H_2O durchgeführten Struk-

turfaktorenberechnung wurde unser, der Raumgruppe $O_{\hbar}^5 - F m \ 3 m$ entsprechendes modifiziertes Strukturmodell mit folgender Besetzung zu Grunde gelegt: 4 Co²⁺ in 4*a*, $2^2/_3$ Co³⁺ in 4*b*, 16 C in 24*e* (x_C), 16 N und 8 O_I in 24*e* (x_N) und 8 O_{II} in 8*c*. Die Koordinaten x_C und x_N wurden auf die Abstände Co–C = 1,85 Å und C–N = 1,15 Å (vgl. [5]) abgestimmt, der den koordinierten Wassermolekeln zukommende Sauerstoff O_I erhielt dieselben Koordinaten wie der Cyanid-Stickstoff. Mit dieser Atomverteilung resultierte ein Zuverlässigkeitsindex *R* von 0,11, wobei wie üblich

$$R = \frac{\sum ||F_0| - |F_c||}{\sum |F_0|} \quad \begin{array}{c} F_0: \text{beobachteter} \\ F_c: \text{berechneter} \end{array} \right\} \text{ Strukturfaktor}$$

Diese erste Rechnung basierte nur auf den Intensitäten derjenigen Reflexe des Pulverdiagramms, die es ermöglichen, individuelle F_0 einzusetzen.

Im nächsten Schritt wurde mit allen einzeln fassbaren F_0 eine FOURIER-Synthese für die (x, y, 0)-Ebene berechnet, da hier die Unterschiede zwischen den beiden Strukturmodellen am deutlichsten sind. Nach dem ursprünglichen Modell sollten nämlich gemäss den Elektronenzahlen von Co²⁺ und Co³⁺ an den Stellen (0,0,0) und $(\frac{1}{2},0,0)$ nahezu identische Elektronendichten auftreten, während das modifizierte Modell wegen der nur zu zwei Dritteln mit Co³⁺ besetzten Position 4*b* bei $(\frac{1}{2},0,0)$ eine kleinere Elektronendichte postuliert als bei (0,0,0).

Fig. 3. $\boldsymbol{\varrho}(\boldsymbol{x}, 0, 0)$ von $Co_3[Co(CN)_6]_2, 12H_2O$; gerechnet mit den einzeln fassbaren F_o (vgl. Text)

Die Cyanid-Gruppe ist in dieser FOURIER-Synthese nicht besonders gut aufgelöst, und es erscheinen Gebiete negativer Elektronendichte, da nur ein Teil der Reflexe in der Rechnung berücksichtigt wurde. Die deutliche, mit dem modifizierten Modell übereinstimmende Ungleichheit der Elektronendichte an den Stellen (0,0,0) und $(\frac{1}{2},0,0)$ wird aber dadurch nicht beeinträchtigt. Die weiteren Rechnungen, wie auch die Strukturbestimmung der analogen Cadmiumverbindung konnten deshalb auf das modifizierte Strukturmodell basiert werden. Die Koordinaten von C, N, O_I und O_{II} sowie die individuellen isotropen Temperaturfaktoren wurden systematisch verfeinert. C und N blieben dabei auf der Position 24*e*, während für O_I und O_{II} auch andere Gitterplätze als die ursprünglich eingesetz-

	$\begin{array}{l} \mathrm{Co_3[Co(CN)_6]_2,}\\ 12\mathrm{H_2O} \end{array}$		$\begin{array}{l} \mathrm{Cd}_3[\mathrm{Co}(\mathrm{CN})_{6}]_2,\\ 12~\mathrm{H}_2\mathrm{O} \end{array}$		i	$\mathrm{Co_3[Co(CN)_6]_2}$, 12 $\mathrm{H_2O}$		$\mathrm{Cd}_3[\mathrm{Co(CN)}_{6}]_2$, 12 $\mathrm{H}_2\mathrm{O}$	
h k l	F_0	F _c	F_{0}	F _c	h k l	F_0	F _c	F_{0}	F _c
1 1 1	33,6	49,4	97,8	118,0	5 3 3	14,7	19,0	74,0	72,7
200	196,2	196,6	261,4	275,9	622	54,6	52,4	106,8	105,3
220	143,7	145,3	217,2	216,1	444	93,1	96,3	139,5	145,(
311	23,2	24,4	100,1	93,9	640	101,8	105,1	137,9	147,(
222	40,7	- 34,8	44,6	40,9	642	74,9	70,3	116,4	112,6
400	268,9	263,9	320,1	324,8	800	81,2	84,0	125,5	12 3 ,2
3 3 1		-	80,1	80.9	662	55,6	5 7 ,2	_	_
420	123,7	118,9	190,7	188,1	840	54,8	56,6	90,8	95,4
4 2 2	75.8	75.5	146,5	136.8	842	33,1	34,4	75,7	79,4
4 4 0	157.3	154.2	211.0	206.4	664	60,0	58,3	87,9	89,
531	29.1	28.6	80,6	78.7	931	15,1	16,9	53,4	49,
620	112.6	110.7	155.2	152.1	844	36,8	38,3	76,2	76,

Tabelle 3. Beobachtete (F_0) und berechnete (F_c) Strukturfaktoren von $Co_3[Co(CN)_6]_2$, 12 H_2O und $Cd_3[Co(CN)_6]_2$, 12 H_2O

Tabelle 4.	$\tilde{F_o^2} u$	nd \tilde{F}_{c}^{2} vor	$i Co_{3}[Co(CN)_{6}]_{2}$	$12 H_2O$
------------	-------------------	----------------------------	----------------------------	-----------

h k l	$\widetilde{F_o^2}$	$\tilde{F_c^2}$	h k l	$\tilde{F_o^2}$	$\tilde{F_c^2}$
1 1 1	113	244	731)		
200	3840	3865	5 5 3	44	69
2 2 0	2060	2111	800	658	706
3 1 1	54	59	733)		
222	165	121	820	795	801
4 0 0	7212	6964	644		
331			822	0.05	0.20
420	1533	1425	660	887	838
422	573	570	751 j		
511	200	107	555	975	1098
333	390	497	662		
440	2468	2378	840	300	320
531			911		
600	5460	5389	753	244	284
442 J			842		
620	1265	1225	664	359	340
533	210	211	931	23	29
622	319	311	844	135	147
4 4 4	865	927	933		
711			771		
551	1076	1206	755	1415	1478
640 J			10 0 0		
642	560	494	860		
			1020	530	418
			862 ∫	550	410

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	 h k l	$\widetilde{F^2}$	$\widetilde{F^2}$	h k l	$\tilde{F^2}$	$ \tilde{F^2}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 _C	- c		1 0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$1 \ 1 \ 1$	979	1392	733	1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	200	6996	7612	820	2444	2442
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	220	4830	467 0	644		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 1 1	1025	881	822	0710	2207
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	222	205	168	660	2/15	2397
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 0 0	10491	10549	7 5 1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	331	1200	4102	555	3751	4191
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4 2 0	4580	4195	662		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4 2 2	2197	1871	840	844	910
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$5\ 1\ 1$	2459	2074	911		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	333	3438	3072	7 5 3	1896	1948
$ \begin{bmatrix} 5 & 3 & 1 \\ 6 & 0 & 0 \\ 4 & 4 & 2 \\ 4 & 4 & 2 \\ 4 & 4 & 2 \\ 5 & 3 & 3 \\ 6 & 2 & 0 \\ 5 & 3 & 3 \\ 6 & 2 & 2 \\ 7 & 1 & 1 \\ 5 & 5 & 1 \\ 5 & 5 & 1 \\ 6 & 4 & 2 \\ 5 & 5 & 1 \\ 5 & 5 & 1 \\ 5 & 5 & 3 \\ 5 & 3 & 3 \\ 0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 5 & 5 & 1 \\ 5 & 5 & 1 \\ 1 & 1$	4 4 0	4558	4260	842		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	531)		664	791	801
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	600	6 791	16642	931	292	243
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4 4 2	J		844	594	588
$ \begin{array}{c} 5 & 3 & 3 \\ 6 & 2 & 2 \\ 4 & 4 & 4 \\ 5 & 5 & 1 \\ 6 & 4 & 0 \\ 6 & 4 & 0 \\ 6 & 4 & 2 \\ 5 & 5 & 3 \\ 5 & 5 & 3 \\ 5 & 5 & 3 \\ 8 & 0 & 0 \end{array} \right\} \begin{array}{c} 1729 & 1637 \\ 1637 & 7 & 1 \\ 7 & 5 & 5 \\ 10 & 0 & 0 \\ 8 & 6 & 0 \\ 8 & 6 & 0 \\ 8 & 6 & 2 \\ 10 & 2 & 0 \\ 8 & 6 & 2 \\ 8 & 6 & 2 \\ 10 & 2 & 0 \\ 8 & 6 & 2 \\ 8 & 6 & 2 \\ 10 & 2 & 0 \\ 8 & 6 & 2 \\ 10 & 2 & 0 \\ 8 & 6 & 2 \\ 10 & 2 & 0 \\ 8 & 6 & 2 \\ 10 & 2 & 2 \\ 10 & 2 & 2 \\ 10 & 2 & 2 \\ 3 & 10 & 2 & 2 \\ 8 & 0 & 0 & 1613 \\ 1518 & 6 & 6 & 6 \end{array} \right\} \begin{array}{c} 5131 & 5363 \\ 513$	620	2466	2313	933	1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	533] 1720	1 () 7	771		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	622	{ 1729	1637	755	5131	5363
$ \left. \begin{array}{c} 7 & 1 & 1 \\ 5 & 5 & 1 \\ 6 & 4 & 0 \end{array} \right\} \left. \begin{array}{c} 2491 \\ 2491 \\ 6 & 4 & 2 \end{array} \right. \left. \begin{array}{c} 8 & 6 & 0 \\ 10 & 2 & 0 \\ 8 & 6 & 2 \\ 8 & 6 & 2 \end{array} \right\} \left. \begin{array}{c} 1524 \\ 1429 \\ 8 & 6 & 2 \\ 8 & 6 & 2 \\ 7 & 7 & 3 \\ 10 & 2 & 2 \\ 8 & 0 & 0 \end{array} \right\} \left. \begin{array}{c} 839 \\ 839 \\ 1613 \\ 1518 \end{array} \right. \left. \begin{array}{c} 8 & 6 & 0 \\ 7 & 7 & 3 \\ 10 & 2 & 2 \\ 6 & 6 & 6 \end{array} \right\} \left. \begin{array}{c} 3191 \\ 3191 \\ 3346 \\ 3191 \end{array} \right. \left. \begin{array}{c} 3346 \\ 3191 \\ 3346 \\ 3191 \end{array} \right. \left. \begin{array}{c} 3346 \\ 3191 \\ 3346 \\ 3191 \\ 3346 \\ 3191 \\ 3346 \\ 3191 \\ 3346 \\ 3191 \\ 3191 \\ 3346 \\ 3191 \\$	444	1993	2102	10 0 0		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	711	1		860		
$ \begin{array}{c} 6 & 4 & 0 \\ 6 & 4 & 2 \\ 7 & 3 & 1 \\ 5 & 5 & 3 \\ 8 & 0 & 0 \end{array} \begin{array}{c} 8 & 6 & 2 \\ 1387 & 1268 \\ 839 \\ 842 \\ 10 & 2 & 2 \\ 6 & 6 & 6 \end{array} \begin{array}{c} 1524 & 1428 \\ 9 & 5 & 1 \\ 7 & 7 & 3 \\ 10 & 2 & 2 \\ 10 & 2 & 2 \\ 6 & 6 & 6 \end{array} \right\}$	551	2491	2951	10 2 0	4-04	1.120
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	640	J		862	\$ 1524	1429
$ \left. \begin{array}{c} 7 & 3 & 1 \\ 5 & 5 & 3 \\ 8 & 0 & 0 \end{array} \right\} \left. \begin{array}{c} 839 \\ 1613 \end{array} \right. \left. \begin{array}{c} 842 \\ 1518 \end{array} \right \left. \begin{array}{c} 7 & 7 & 3 \\ 10 & 2 & 2 \\ 6 & 6 & 6 \end{array} \right\} \left. \begin{array}{c} 3191 \\ 3346 \end{array} \right. $	642	1387	1268	951		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	731)	0.1.2	773		2246
8 0 0 1613 1518 6 6 6 6	553	839	842	10 2 2	\$ 3191	3346
	8 0 0	ý 1613	1518	666		

Tabelle 5. \tilde{F}_{o}^{2} und \tilde{F}_{c}^{2} von $Cd_{3}[Co(CN)_{6}]_{2}$, 12 $H_{2}O$

Tabelle 6. Atomkoordinaten (in Achsenbruchteilen) und Temperaturfaktoren von $Co_3[Co(CN)_6]_2$, $12 H_2O$ und $Cd_3[Co(CN)_6]_2$, $12 H_2O$

	$Co_3[Co(CN_6]_2, 12 H_2O]$				Cd ₃ [Co	$\mathrm{Cd}_3[\mathrm{Co(CN)}_6]_2, 12~\mathrm{H_2O}$			
		у	z	В	x	у	z	В	
4 M ²⁺ in 4 <i>a</i>	0,000	0,000	0,000	2,7 ± 0,3	0,000	0,000	0,000	2,4 ± 0,3	
$2^2/_3\operatorname{Co}^{3+}\operatorname{in}4b$	0,500	0,500	0,500	$3,1\\\pm 0,3$	0,500	0,500	0,500	$3,1$ \pm 0,3	
16 C in 24 <i>e</i>	0,316 ± 0,004	0,000	0,000	$\begin{array}{c} \textbf{3,6} \\ \pm \text{ 0,5} \end{array}$	$\begin{array}{c} 0,322\\ \pm\ 0,004\end{array}$	0,000	0,000	$^{6,1}_{\pm0,5}$	
16 N in 24 <i>e</i>	$\substack{0,204\\\pm0,004}$	0,000	0,000	$\begin{array}{c} \textbf{3,8} \\ \pm \text{ 0,5} \end{array}$	$\begin{array}{c} 0,212\\ \pm \ 0,004\end{array}$	0,000	0,000	$^{6,4}_{\pm0,5}$	
$8 \text{ O}_{\text{I}} \text{ in } 96 k$	$0,020 \\ \pm 0,004$	$\begin{array}{c} 0,020\\ \pm \ 0,004\end{array}$	$\substack{0,204\\\pm0,004}$	$4,7$ \pm 0,8	$0,015 \pm 0,004$	$0,015\\\pm0,004$	$0,213 \pm 0,004$	$7 \pm 0,8$	
8 O _{II} in 192 <i>l</i>	0,260 ± 0,004	$^{0,265}_{\pm0,004}$	$0,304 \\ \pm 0,004$	$6,3\\\pm0,8$	$\begin{array}{c} 0,240 \\ \pm \ 0,004 \end{array}$	$0,290 \pm 0,004$	$0,306 \pm 0,004$	$7 \pm 0,8$	

ten Lagen 24e und 8c berücksichtigt wurden. Die Rechnungen ergaben minimale Zuverlässigkeitsindices R von 0,038 für Co₃[Co(CN)₆]₂, 12 H₂O und 0,037 für Cd₃[Co(CN)₆]₂, 12 H₂O. Bei Berücksichtigung aller gemessenen Intensitäten ein-

schliesslich der koinzidierenden, bzw. schlecht auftrennbaren Reflexe resultieren \tilde{R} -Werte von 0,050 und 0,057. \tilde{R} ist definiert durch [13]:

$$\tilde{R} = \frac{\sum \left|\tilde{F}_{o}^{2} - \tilde{F}_{c}^{2}\right|}{\sum \tilde{F}_{o}^{2}} \quad \frac{\tilde{F}_{o}^{2}: \text{ beobachtete }}{\tilde{F}_{c}^{2}: \text{ berechnete }} \right\} \begin{cases} \text{Summe von Strukturfaktorquadraten koinzidierender Reflexe} \end{cases}$$

Die den besten R-, bzw. \tilde{R} -Werten entsprechenden Strukturparameter mit den geschätzten Standardabweichungen sind in Tabelle 6, die zugehörigen zwischenatomaren Abstände in Tabelle 7 zusammengestellt.

	$Co_3[Co(CN)_6]_2, 12 H_2O$	$Cd_{3}[Co(CN)_{6}]_{2}$, 12 H ₂ C		
 Co ³⁺ –C	1,88	1,89		
C–N	1,15	1,17		
M ²⁺ N	2,08	2,24		
M ²⁺ -O ₇	2,10	2,27		
kürzeste O _I –H–O _{II}	2,89; 2,94; 3,05	2,82; 3,04		

Tabelle 7. Zwischenatomare Abstände (in Å) von $Co_3[Co(CN)_6]_2$, 12 H_2O und $Cd_3[Co(CN)_6]_2$, 12 H_2O

Es zeigt sich, dass die den koordinierten Wassermolekeln zukommenden O_I geringfügig aus der Idealposition 24*e* verschoben sind. Ebenfalls sitzen die O_{II} nicht genau in den Zentren der Achtelswürfel (8*c*), sondern verteilen sich darum herum auf die allgemeine 192-zählige Position. Die kristallographisch ermittelten kürzesten O_I -H- O_{II} -Abstände stimmen mit den aus den Infrarotspektren abgeschätzten Wasserstoffbrückenlängen überein.

Zur Illustration der Strukturen wurden FOURIER-Synthesen berechnet, wobei wegen der generell guten Übereinstimmung der beobachteten mit den berechneten Strukturfaktoren neben den einzeln fassbaren F_0 auch die F_c der koinzidierenden Reflexe mit einbezogen wurden. Für $\varrho(x, y, 0)$ von $\operatorname{Co}_3[\operatorname{Co}(\operatorname{CN})_6]_2$, 12 H₂O ergeben sich prinzipiell dieselben Verhältnisse, wie sie als Ausschnitt in Fig. 3 dargestellt sind.

Im ursprünglichen Modell sind auf die acht Achtelswürfel zwei Co²⁺-, bzw. Cd²⁺-Ionen verteilt, während sich nach dem modifizierten Modell in jedem der Achtelswürfel eine Wassermolekel befindet. Das ursprüngliche Modell postuliert deshalb, dass in den FOURIER-Projektionen $\varrho(x, y)$ von Co₃[Co(CN)₆]₂, 12 H₂O und Cd₃[Co(CN)₆]₂, 12 H₂O die Elektronendichten in den Zentren der Achtelswürfel proportional den Elektronenzahlen von Co²⁺ und Cd²⁺ sind, wogegen das modifizierte Modell für beide Verbindungen im Innern der Achtelswürfel gleiche Elektronendichten erwartet.

Die hier berechneten FOURIER-Synthesen stellen eine direkte Abbildung der im modifizierten Modell enthaltenen strukturellen Verhältnisse dar. Eine noch deutlichere Bestätigung des modifizierten Strukturmodells ist rein zahlenmässig in den sehr kleinen Werten der Zuverlässigkeitsindices R ausgedrückt.

3. Zusammenfassung. – Die Kombination der hier behandelten verschiedenen Teilaspekte – Dichte und Gitterkonstante, Infrarot- und Elektronenspektren, Rönt-GEN-Strukturbestimmung – führt zu einer generellen Bestätigung unseres modifizierten Strukturmodells und ermöglicht eine recht weitgehende Darstellung der Strukturchemie der untersuchten polynuclearen Hexacyanokobaltate(III): In der kubischflächenzentrierten Elementarzelle befinden sich 1¹/₃ Formeleinheiten $M_3[Co(CN)_6]_2$, 12 H₂O. Vier Kationen M²⁺ sitzen in der Position 4*a* (Ecken und Flächenmitten); die Co³⁺-Ionen besetzen zu zwei Dritteln die Position 4*b* (Kantenmitten und Zentrum). Die Cyanid-Ionen belegen die Kanten der Achtelswürfel (24*e*), wobei der nicht von Stickstoff beanspruchte Anteil dieser Gitterplätze von Wassermolekeln besetzt wird, die geringfügig aus der Lage 24*e* verschoben sind. Als Koordinationseinheiten treten einerseits [$Co^{3+}C_{6}$]-Oktaeder, andererseits pseudooktaedrische Gruppen der mittleren Zusammensetzung [$M^{2+}N_{4}(H_{2}O)_{2}$] auf. Der ambidente Charakter des Cyanid-Ions manifestiert sich in den $M^{2+}-N-C-Co^{3+}$ -Brücken; über diese Brücken sind die beiden verschiedenen Metall-Ionen zu einer dreidimensionalen Gerüststruktur verknüpft. Jeder Achtelswürfel enthält noch zeolithisches Wasser, das über eine Wasserstoffbrücke mit den zur Koordinationssphäre von M^{2+} gehörenden Wassermolekeln zusammenhängt.

Arbeiten zur Abklärung der Frage, wie weit unser modifiziertes Strukturmodell im Bereich der polynuclearen Übergangsmetallcyanide verallgemeinert werden kann, sind gegenwärtig im Gange. Entsprechende Untersuchungen an Berlinerblau, $Fe_4[Fe(CN)_6]_3$, x H₂O, stehen in Übereinstimmung mit dem hier beschriebenen Strukturprinzip [14].

4. Experimenteller Teil. – 4.1. Analysen. C, N, H: Dr. K. EDER, Analytisches Laboratorium, Universität Genf, und analytisches Laboratorium der Fa. Dr. A. WANDER AG, Bern. – H₂O: Thermogravimetrisch (Thermowaage SADAMEL). – Gesamt-Co in Co₃[Co(CN)₆]₂, 12 H₂O: Nach Aufschluss mit konz. H₂SO₄ komplexometrisch. – Cd²⁺, Co²⁺ und Co(CN)₆³⁻: Aufschluss mit Komplexonlösung nach [15]. – K⁺: Flammenphotometrisch.

4.2. Dichte. Verdrängungsmethode mit Dekalin. Zur Entfernung der Luft wurde das Pyknometer mit Präparat und Dekalin im Ultraschallbad (1 MHz) evakuiert.

4.3. Darstellung der Substanzen. Simultanfällung von je 100 ml 0,1 N H₃Co(CN)₆ und 0,1 N M²⁺-Lösung (Chlorid oder Sulfat) unter Lichtabschluss mit der in [16] beschriebenen Vorrichtung; Vorlage: 1 l Wasser; Dauer und Temperatur der Fällung: 130 Std. für Co₃[Co(CN)₆]₂, 12 H₂O, Siedetemperatur; 68 Std. für die andern Hexacyanokobaltate(III), Zimmertemperatur. Die wässerige Lösung von H₃Co(CN)₆ wurde durch Ionenaustausch einer K₃Co(CN)₆-Lösung an Dowex 50 hergestellt. Nach Beendigung der Fällung wurden die Niederschläge filtriert, mehrmals mit heissem Wasser gewaschen, über KOH ohne Vakuum getrocknet und mehrere Tage an der Luft stehengelassen. Die derart hergestellten Präparate bestehen aus würfelförmigen Kriställchen von rund 0,01 bis 0,05 mm Kantenlänge.

		Co ^{II} /C	d Co(CN	б) ₆ Н ₂ О	С	N	Н	Ges. Co	к
Co ₃ [Co(CN) ₆] ₂ , 12 H ₂ O	Ber. Gef.	21,5 21,8	52,3 53,1	26,3 26,2	17,5 17,3	20,4 20,0	2,9 3,4	35,8 34,3	- % < 0,1%
$\operatorname{Cd}_3[\operatorname{Co}(\operatorname{CN})_6]_2$, 12 $\operatorname{H}_2\operatorname{O}$	Ber. Gef.	34,3 33,8	43,7 43,1	22,0 22,0	14,7 14,6	17,1 17,3	2,4 2,8	_	- % 0,2%

Während die thermogravimetrischen Daten gut mit der angegebenen Zusammensetzung übereinstimmen, ergeben die H-Analysen einen etwas höheren Wassergehalt (Hydratstufe von rund 14 H_2O).

4.4. Die Infrarotspektren wurden mit einem BECKMAN IR-9 sowohl von KBr-Presslingen als auch von Nujol-Aufschlämmungen aufgenommen. Eichung: Polystyrolfolie.

4.5. Zur Messung der Reflexionsspektren diente im Sichtbaren ein ZEISS PMQ-II mit RA-3, im UV. ein BECKMAN DK-2A. Weiss-Standard: MgO.

4.6. Röntgenographisches. Die Bestimmung der Gitterkonstanten erfolgte aus GUINIER-Aufnahmen; Strahlung: Fe $K\alpha$; Interner Standard: KCl. – Für die Intensitätsmessungen diente ein PHILIPS-Zählrohrgoniometer (FeKα-Strahlung). – Im erfassten ϑ -Bereich bis 76° sind für Co₃[Co(CN)₆]₂, 12 H₂O 36, für Cd₃[Co(CN)₆]₂, 12 H₂O 38 Linien möglich. – Bei einer Goniometergeschwindigkeit von ${}^{1}/_{8}{}^{\circ}$ /min wurde alle 2 Min. die aufsummierte Anzahl der Impulse ausgedruckt. Aus diesen Datenstreifen konnten nach der Untergrundskorrektur die Intensitäten der einzelnen Linien des Pulverdiagramms bestimmt werden. Die Intensitäten von schlecht getrennten Linien wurden zusätzlich planimetrisch gemessen. – Nach Berücksichtigung des LORENTZ- und Polarisationsfaktors sowie der Flächenhäufigkeit wurden die gemessenen Intensitäten (Mittelwerte aus 3–5 Einzelmessungen) mit Hilfe einer WILSON-Statistik auf annähernd absolute Basis gebracht. – Zur Berechnung der Atomformfaktoren von Co²⁺, Co³⁺, Ag⁺ (isoelektronisch mit Cd²⁺), C, N⁻ und O⁻ dienten die Koeffizienten von Moorke [17]. – Gerechnet wurde mit folgenden IBM-1620-Programmen: MIB-5: Atomformfaktoren (N.D.JONES, früher Abteilung für Kristallographie, Universität Bern); ICR-4: Strukturfaktoren, ICR-1 und ICR-6: FOURIER-Synthese (D.VAN DER HELM, Institute for Cancer Research, Philadelphia); MIB-QRS: \tilde{R} (H.BÜRKI, Abteilung für Kristallographie, Universität Bern).

Herrn Prof. Dr. W. FEITKNECHT danken wir für seine Unterstützung. Die Programme zur Strukturbestimmung wurden uns freundlicherweise von Herrn Prof. Dr. W. NOWACKI zur Verfügung gestellt. Herrn Dr. H. LEHNER und Herrn A. EGLI (Dr. A. WANDER AG) danken wir für die Ausführung einiger Elementaranalysen. Die Arbeit wurde finanziert vom Schweizerischen Na-TIONALFONDS.

LITERATURVERZEICHNIS

- [1] D. BRITTON, Perspectives structur. Chemistry 1, 109 (1967).
- [2] J.F. KEGGIN & F.D. MILES, Nature 137, 577 (1936).
- [3] A.K. VAN BEVER, Rec. Trav. chim. Pays-Bas 57, 1259 (1938).
- [4] H.B. WEISER, W.O. MILLIGAN & J.B. BATES, J. physic. Chemistry 46, 99 (1942).
- [5] A. FERRARI, M. E. TANI & G. MAGNANO, Gazz. chim. ital. 89, 2512 (1959).
- [6] K.MAER, M.L.BEASLEY, R.L.COLLINS & W.O.MILLIGAN, J. Amer. chem. Soc. 90, 3201 (1968).
- [7] «International Tables for X-ray Crystallography», The Kynoch Press, Birmingham 1952.
- [8] D.F. SHRIVER, S.A. SHRIVER & S.E. ANDERSON, Inorg. Chemistry 4, 725 (1965).
- [9] K. NAKAMOTO, M. MARGOSHES & R. E. RUNDLE, J. Amer. chem. Soc. 77, 6480 (1955).
- [10] K.NAKAMOTO, «Infrared Spectra of Inorganic and Coordination Compounds», J. Wiley, New York 1963.
- [11] C.K. JØRGENSEN, «Absorption Spectra and Chemical Bonding in Complexes», Pergamon Press, Oxford 1962.
- [12] H.H. SCHMIDTKE, Ber. Bunsenges. 77, 1138 (1967).
- [13] H. BÜRKI, Helv. 51, 1381 (1968).
- [14] A.LUDI, R.HÜGI & H.U.GÜDEL, in Vorbereitung.
- [15] J. KRTIL, Collection czechoslov. chem. Commun. 32, 4496 (1967).
- [16] A.LUDI & R.HÜGI, Helv. 50, 1283 (1967).
- [17] F.H. MOORE, Acta crystallogr. 16, 1169 (1963).

2016